Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315853

RESUMO

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Assuntos
Lipossomos , Nanopartículas , Pneumonia Viral , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipídeos/farmacologia , Macrófagos/metabolismo , RNA Interferente Pequeno/metabolismo , Citocinas/metabolismo , Pneumonia Viral/metabolismo
2.
Front Immunol ; 14: 1169968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180156

RESUMO

Introduction: Human adenovirus (HAdV) is a common respiratory virus, which can lead to severe pneumonia in children and immunocompromised persons, and canonical inflammasomes are reported to be involved in anti-HAdV defense. However, whether HAdV induced noncanonical inflammasome activation has not been explored. This study aims to explore the broad roles of noncanonical inflammasomes during HAdV infection to investigate the regulatory mechanism of HAdV-induced pulmonary inflammatory damage. Methods: We mined available data on GEO database and collected clinical samples from adenovirus pneumonia pediatric patients to investigate the expression of noncanonical inflammasome and its clinical relevance. An in vitro cell model was employed to investigate the roles of noncanonical inflammasomes in macrophages in response to HAdV infection. Results: Bioinformatics analysis showed that inflammasome-related genes, including caspase-4 and caspase-5, were enriched in adenovirus pneumonia. Moreover, caspase-4 and caspase-5 expression levels were significantly increased in the cells isolated from peripheral blood and broncho-alveolar lavage fluid (BALF) of pediatric patients with adenovirus pneumonia, and positively correlated with clinical parameters of inflammatory damage. In vitro experiments revealed that HAdV infection promoted caspase-4/5 expression, activation and pyroptosis in differentiated THP-1 (dTHP-1) human macrophages via NF-κB, rather than STING signaling pathway. Interestingly, silencing of caspase-4 and caspase-5 in dTHP-1 cells suppressed HAdV-induced noncanonical inflammasome activation and macrophage pyroptosis, and dramatically decreased the HAdV titer in cell supernatants, by influencing virus release rather than other stages of virus life cycle. Discussion: In conclusion, our study demonstrated that HAdV infection induced macrophage pyroptosis by triggering noncanonical inflammasome activation via a NF-kB-dependent manner, which may explore new perspectives on the pathogenesis of HAdV-induced inflammatory damage. And high expression levels of caspase-4 and caspase-5 may be a biomarker for predicting the severity of adenovirus pneumonia.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Pneumonia Viral , Humanos , Criança , Inflamassomos/metabolismo , Piroptose , Infecções por Adenovirus Humanos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Caspases/metabolismo , Pneumonia Viral/metabolismo , Infecções por Adenoviridae/complicações
3.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707501

RESUMO

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Viral , Humanos , Camundongos , Animais , Interleucina-18/metabolismo , Cordão Umbilical/metabolismo , Linfócitos T/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo
4.
Pathol Int ; 72(10): 506-518, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066006

RESUMO

Pandemic influenza virus A(H1N1)pdm09 infection occurred in healthy children and young adults, but asthmatic patients presented more rapid progression of respiratory distress and plastic bronchitis. To investigate the pathogenesis of worsening respiratory symptoms after A(H1N1)pdm09 infection, we focused on matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1). MMP-9 and TIMP-1 levels in bronchoalveolar lavage fluid and serum from mice with and without asthma were evaluated after A(H1N1)pdm09 or seasonal A(H1N1) infection. MMP-9 levels were more elevated in Asthma/A(H1N1)pdm09-infected mice than in non-Asthma/A(H1N1)pdm09-infected mice on both 3 and 7 days post-infection. Immunohistochemical findings in this pneumonia model showed that MMP-9 and TIMP-1 positive cells were observed in blood vessels and bronchus of lung tissue in severe pathological findings of pneumonia with asthma. Microscopically, shedding cells and secretions were conspicuous in the trachea on days 3 and 7 post-infection, in the A(H1N1)pdm09-infected mice with asthma. Our results suggest that MMP-9 and TIMP-1 expressions are related to severe pneumonia in the A(H1N1)pdm09 infection with asthma, leading to cause epithelial cell shedding.


Assuntos
Asma , Metaloproteinase 9 da Matriz , Infecções por Orthomyxoviridae , Pneumonia Viral , Inibidor Tecidual de Metaloproteinase-1 , Animais , Asma/metabolismo , Modelos Animais de Doenças , Vírus da Influenza A Subtipo H1N1 , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Plásticos , Pneumonia Viral/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177474

RESUMO

Viral causes of pneumonia pose constant threats to global public health, but there are no specific treatments currently available for the condition. Antivirals are ineffective when administered late after the onset of symptoms. Pneumonia is caused by an exaggerated inflammatory cytokine response to infection, but tissue necrosis and damage caused by virus also contribute to lung pathology. We hypothesized that viral pneumonia can be treated effectively if both virus and inflammation are simultaneously targeted. Combined treatment with the antiviral drug cidofovir and etanercept, which targets tumor necrosis factor (TNF), down-regulated nuclear factor kappa B-signaling and effectively reduced morbidity and mortality during respiratory ectromelia virus (ECTV) infection in mice even when treatment was initiated after onset of clinical signs. Treatment with cidofovir alone reduced viral load, but animals died from severe lung pathology. Treatment with etanercept had no effect on viral load but diminished levels of inflammatory cytokines and chemokines including TNF, IL-6, IL-1ß, IL-12p40, TGF-ß, and CCL5 and dampened activation of the STAT3 cytokine-signaling pathway, which transduces signals from multiple cytokines implicated in lung pathology. Consequently, combined treatment with a STAT3 inhibitor and cidofovir was effective in improving clinical disease and lung pathology in ECTV-infected mice. Thus, the simultaneous targeting of virus and a specific inflammatory cytokine or cytokine-signaling pathway is effective in the treatment of pneumonia. This approach might be applicable to pneumonia caused by emerging and re-emerging viruses, like seasonal and pandemic influenza A virus strains and severe acute respiratory syndrome coronavirus 2.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antivirais/uso terapêutico , Cidofovir/uso terapêutico , Etanercepte/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cidofovir/farmacologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Vírus da Ectromelia/efeitos dos fármacos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia Viral/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Carga Viral/efeitos dos fármacos
6.
Front Immunol ; 12: 785457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868067

RESUMO

Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.


Assuntos
Imunidade Adaptativa , Quimiocina CXCL5/metabolismo , Quimiotaxia/imunologia , Imunidade Inata , Influenza Humana/complicações , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Quimiocina CXCL5/genética , Quimiotaxia/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Humanos , Imunofenotipagem , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/patologia , Influenza Humana/virologia , Leucócitos/imunologia , Leucócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Pneumonia Viral/patologia , Transdução de Sinais
7.
Physiol Rep ; 9(21): e15081, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755490

RESUMO

Influenza remains a major cause of death and disability with limited treatment options. Studies of acute lung injury have identified angiopoietin-2 (Ang-2) as a key prognostic marker and a potential mediator of Acute respiratory distress syndrome. However, the role of Ang-2 in viral pneumonia remains poorly defined. This study characterized the time course of lung Ang-2 expression in severe influenza pneumonia and tested the therapeutic potential of Ang-2 inhibition. We inoculated adult mice with influenza A (PR8 strain) and measured angiopoietin-1 (Ang-1), Ang-2, and Tie2 expressions during the evolution of inflammatory lung injury over the first 7 days post-infection (dpi). We tested a peptide-antibody inhibitor of Ang-2, L1-7, administered at 2, 4, and 6 dpi and measured arterial oxygen saturation, survival, pulmonary edema, inflammatory cytokines, and viral load. Finally, we infected primary human alveolar type II epithelial (AT2) cells grown in air-liquid interface culture with influenza and measured Ang-2 RNA expression. Influenza caused severe lung injury between 5 and 7 dpi in association with increased Ang-2 lung RNA and a dramatic increase in Ang-2 protein in bronchoalveolar lavage. Inhibition of Ang-2 improved oxygenation and survival and reduced pulmonary edema and alveolar-capillary barrier permeability to protein without major effects on inflammation or viral load. Finally, influenza increased the expression of Ang-2 RNA in human AT2 cells. The increased Ang-2 levels in the airspaces during severe influenza pneumonia and the improvement in clinically relevant outcomes after Ang-2 antagonism suggest that the Ang-1/Ang-2 Tie-2 signaling axis is a promising therapeutic target in influenza and potentially other causes of viral pneumonia.


Assuntos
Angiopoietina-2/antagonistas & inibidores , Orthomyxoviridae/patogenicidade , Pneumonia Viral/tratamento farmacológico , Angiopoietina-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptor TIE-2/metabolismo , Carga Viral
8.
Med Sci Monit ; 27: e930776, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635632

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, patients presented with COVID-19 pneumonia of varying severity. The phenomenon of severe hypoxemia without signs of respiratory distress is also known as silent or hidden hypoxemia. Although silent hypoxemia is not unique to pneumonia due to SARS-CoV-2 infection, this phenomenon is now recognized to be associated with severe COVID-19 pneumonia. Proper management of critically ill patients is the key to reducing mortality. Herein, we summarize the possible and rare factors contributing to silent hypoxemia in patients with COVID-19. Microvascular thrombosis causes dead space ventilation in the lungs, and the flow of pulmonary capillaries is reduced, which leads to an imbalance in the V/Q ratio. The dissociation curve of oxyhemoglobin shifts to the left and limits the release of oxygen to the tissue. SARS-CoV-2 interferes with the synthesis of hemoglobin and reduces the ability to carry oxygen. The accumulation of endogenous carbon monoxide and carboxyhemoglobin will reduce the total oxygen carrying capacity and interfere with pulse oxygen saturation readings. There are also some non-specific factors that cause the difference between pulse oximetry and oxygen partial pressure. We propose some potentially more effective clinical alternatives and recommendations for optimizing the clinical management processes of patients with COVID-19. This review aims to describe the prevalence of silent hypoxemia in COVID-19 pneumonia, to provide an update on what is known of the pathophysiology, and to highlight the importance of diagnosing silent hypoxemia in patients with COVID-19 pneumonia.


Assuntos
COVID-19/metabolismo , Hipóxia/virologia , Pneumonia Viral/virologia , Doenças Assintomáticas/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Hipóxia/epidemiologia , Hipóxia/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Microvasos/metabolismo , Oximetria , Oxigênio/metabolismo , Pneumonia Viral/metabolismo , Prevalência , SARS-CoV-2/isolamento & purificação , Trombose/metabolismo , Trombose/virologia
9.
Sci Rep ; 11(1): 20621, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663864

RESUMO

Pneumonia is the main reason for mortality among children under five years, causing 1.6 million deaths every year; late research has exhibited that mortality is increasing in the elderly. A few biomarkers used for its diagnosis need specificity and precision, as they are related to different infections, for example, pulmonary tuberculosis and Human Immunodeficiency Virus. There is a quest for new biomarkers worldwide to diagnose the disease to defeat these previously mentioned constraints. Antimicrobial peptides (AMPs) are promising indicative specialists against infection. This research work used AMPs as biomarkers to detect viral pneumonia pathogens, for example, Respiratory syncytial virus, Influenza A and B viruses utilizing in silico technologies, such as Hidden Markov Model (HMMER). HMMER was used to distinguish putative anti-viral pneumonia AMPs against the recognized receptor proteins of Respiratory syncytial virus, Influenza A, and B viruses. The physicochemical parameters of these putative AMPs were analyzed, and their 3-D structures were determined utilizing I-TASSER. Molecular docking interaction of these AMPs against the recognized viral pneumonia proteins was carried out using the PATCHDOCK and HDock servers. The results demonstrated 27 anti-viral AMPs ranked based on their E values with significant physicochemical parameters in similarity with known experimentally approved AMPs. The AMPs additionally had a high anticipated binding potential to the pneumonia receptors of these microorganisms sensitively. The tendency of the putative anti-viral AMPs to bind pneumonia proteins showed that they would be promising applicant biomarkers to identify these viral microorganisms in the point-of-care (POC) pneumonia diagnostics. The high precision observed for the AMPs legitimizes HMM's utilization in the disease diagnostics' discovery process.


Assuntos
Peptídeos Antimicrobianos/análise , Peptídeos Antimicrobianos/química , Pneumonia Viral/tratamento farmacológico , Peptídeos Antimicrobianos/genética , Antivirais/uso terapêutico , Biomarcadores/análise , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Factuais , Humanos , Vírus da Influenza A , Vírus da Influenza B , Cadeias de Markov , Simulação de Acoplamento Molecular , Pneumonia Viral/metabolismo , Ligação Proteica , Vírus Sinciciais Respiratórios
10.
Cell Rep ; 37(1): 109798, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587481

RESUMO

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Proteínas do Sistema Complemento/imunologia , Eosinófilos/imunologia , Inflamação/imunologia , Pneumonia Viral/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Eosinófilos/virologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Células Th2/imunologia , Carga Viral , Adulto Jovem
11.
Crit Care ; 25(1): 234, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217339

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) has induced a worldwide epidemiological event with a high infectivity and mortality. However, the predicting biomarkers and their potential mechanism in the progression of COVID-19 are not well known. OBJECTIVE: The aim of this study is to identify the candidate predictors of COVID-19 and investigate their underlying mechanism. METHODS: The retrospective study was conducted to identify the potential laboratory indicators with prognostic values of COVID-19 disease. Then, the prognostic nomogram was constructed to predict the overall survival of COVID-19 patients. Additionally, the scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of the most important prognostic indicators in lungs and peripherals, respectively. RESULTS: In total, 304 hospitalized adult COVID-19 patients in Wuhan Jinyintan Hospital were included in the retrospective study. CEA was the only laboratory indicator with significant difference in the univariate (P < 0.001) and multivariate analysis (P = 0.020). The scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of CEA in lungs and peripherals, respectively. The results revealed the potential roles of CEA were significantly distributed in type II pneumocytes of BALF and developing neutrophils of PBMCs, participating in the progression of COVID-19 by regulating the cell-cell communication. CONCLUSION: This study identifies the prognostic roles of CEA in COVID-19 patients and implies the potential roles of CEACAM8-CEACAM6 in the progression of COVID-19 by regulating the cell-cell communication of developing neutrophils and type II pneumocyte.


Assuntos
COVID-19/metabolismo , Antígeno Carcinoembrionário/metabolismo , Pneumonia Viral/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , COVID-19/mortalidade , Comunicação Celular , China/epidemiologia , Progressão da Doença , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Nomogramas , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , SARS-CoV-2 , Análise de Sobrevida
12.
Toxicol Appl Pharmacol ; 426: 115645, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271066

RESUMO

Elevated ambient temperatures and extreme weather events have increased the incidence of wildfires world-wide resulting in increased wood smoke particle (WSP). Epidemiologic data suggests that WSP exposure associates with exacerbations of respiratory diseases, and with increased respiratory viral infections. To assess the impact of WSP exposure on host response to viral pneumonia, we performed WSP exposures in rodents followed by infection with mouse adapted influenza (HINI-PR8). C57BL/6 male mice aged 6-8 weeks were challenged with WSP or PBS by oropharyngeal aspiration in acute (single dose) or sub-acute exposures (day 1, 3, 5, 7 and 10). Additional groups underwent sub-acute exposure followed by infection by influenza or heat-inactivated (HI) virus. Following exposures/infection, bronchoalveolar lavage (BAL) was performed to assess for total cell counts/differentials, total protein, protein carbonyls and hyaluronan. Lung tissue was assessed for viral counts by real time PCR. When compared to PBS, acute WSP exposure associated with an increase in airspace macrophages. Alternatively, sub-acute exposure resulted in a dose dependent increase in airspace neutrophils. Sub-acute WSP exposure followed by influenza infection was associated with improved respiratory viral outcomes including reduced weight loss and increased blood oxygen saturation, and decreased protein carbonyls and viral titers. Flow cytometry demonstrated dynamic changes in pulmonary macrophage and T cell subsets based on challenge with WSP and influenza. This data suggests that sub-acute WSP exposure can improve host response to acute influenza infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Pneumonia Viral , Fumaça , Incêndios Florestais , Administração por Inalação , Animais , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Índice de Gravidade de Doença , Transcriptoma , Replicação Viral , Madeira
13.
Infect Dis Now ; 51(5): 429-434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146758

RESUMO

INTRODUCTION: The SARS-CoV-2 virus affects many organs, especially the lungs, with widespread inflammation. We aimed to compare the endogenous oxidative damage markers of coenzyme Q10, nicotinamide dinucleotide oxidase 4, malondialdehyde, and ischemia-modified albumin levels in patients with pneumonia caused by SARS-CoV-2 and in an healthy control group. We also aimed to compare these parameters between patients with severe and non-severe pulmonary involvement. METHODS: The study included 58 adult patients with SARS-CoV-2 pneumonia and 30 healthy volunteers. CoQ10 and MDA levels were determined by high-pressure liquid chromatography. NOX4 and IMA levels were determined by ELISA assay and colorimetric method. RESULTS: Higher levels of CoQ10, MDA, NOX4, and IMA and lower levels of COQ10H were observed in patients with SARS-CoV-2 pneumonia than in the control group. MDA, IMA, NOX4, and CoQ10 levels were significantly higher in patients with severe pulmonary involvement than in patients with non-severe pulmonary involvement, but no significant difference was observed in CoQ10H levels. CoQ10 levels were significantly and positively correlated with both ferritin and CRP levels. CONCLUSION: SARS-CoV-2 pneumonia is significantly associated with increased endogenous oxidative damage. Oxidative damage seems to be associated with pulmonary involvement severity.


Assuntos
COVID-19/sangue , COVID-19/metabolismo , Estresse Oxidativo , Pneumonia Viral/sangue , Pneumonia Viral/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
14.
Am J Epidemiol ; 190(10): 2094-2106, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984860

RESUMO

Longitudinal trajectories of vital signs and biomarkers during hospital admission of patients with COVID-19 remain poorly characterized despite their potential to provide critical insights about disease progression. We studied 1884 patients with severe acute respiratory syndrome coronavirus 2 infection from April 3, 2020, to June 25, 2020, within 1 Maryland hospital system and used a retrospective longitudinal framework with linear mixed-effects models to investigate relevant biomarker trajectories leading up to 3 critical outcomes: mechanical ventilation, discharge, and death. Trajectories of 4 vital signs (respiratory rate, ratio of oxygen saturation (Spo2) to fraction of inspired oxygen (Fio2), pulse, and temperature) and 4 laboratory values (C-reactive protein (CRP), absolute lymphocyte count (ALC), estimated glomerular filtration rate, and D-dimer) clearly distinguished the trajectories of patients with COVID-19. Before any ventilation, log(CRP), log(ALC), respiratory rate, and Spo2-to-Fio2 ratio trajectories diverge approximately 8-10 days before discharge or death. After ventilation, log(CRP), log(ALC), respiratory rate, Spo2-to-Fio2 ratio, and estimated glomerular filtration rate trajectories again diverge 10-20 days before death or discharge. Trajectories improved until discharge and remained unchanged or worsened until death. Our approach characterizes the distribution of biomarker trajectories leading up to competing outcomes of discharge versus death. Moving forward, this model can contribute to quantifying the joint probability of biomarkers and outcomes when provided clinical data up to a given moment.


Assuntos
Biomarcadores/metabolismo , COVID-19/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Pneumonia Viral/metabolismo , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Maryland/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Estudos Retrospectivos , SARS-CoV-2 , Sinais Vitais
15.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919158

RESUMO

Extracellular vesicles (EVs) refer to a heterogenous population of membrane-bound vesicles that are released by cells under physiological and pathological conditions. The detection of EVs in the majority of the bodily fluids, coupled with their diverse cargo comprising of DNA, RNA, lipids, and proteins, have led to the accumulated interests in leveraging these nanoparticles for diagnostic and therapeutic purposes. In particular, emerging studies have identified enhanced levels of a wide range of specific subclasses of non-coding RNAs (ncRNAs) in EVs, thereby suggesting the existence of highly selective and regulated molecular processes governing the sorting of these RNAs into EVs. Recent studies have also illustrated the functional relevance of these enriched ncRNAs in a variety of human diseases. This review summarizes the current state of knowledge on EV-ncRNAs, as well as their functions and significance in lung infection and injury. As a majority of the studies on EV-ncRNAs in lung diseases have focused on EV-microRNAs, we will particularly highlight the relevance of these molecules in the pathophysiology of these conditions, as well as their potential as novel biomarkers therein. We also outline the current challenges in the EV field amidst the tremendous efforts to propel the clinical utility of EVs for human diseases. The lack of published literature on the functional roles of other EV-ncRNA subtypes may in turn provide new avenues for future research to exploit their feasibility as novel diagnostic and therapeutic targets in human diseases.


Assuntos
Vesículas Extracelulares/fisiologia , Lesão Pulmonar/metabolismo , Pneumonia Bacteriana/metabolismo , Pneumonia Viral/metabolismo , RNA não Traduzido/fisiologia , Animais , Biomarcadores/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia
16.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
17.
JCI Insight ; 6(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33600379

RESUMO

Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury after viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and SARS coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell prorepair function after lung injury remains unknown. Here, we showed that aging results in a cell-autonomous impairment of reparative Treg cell function after experimental influenza pneumonia. Transcriptional and DNA methylation profiling of sorted Treg cells provided insight into the mechanisms underlying their age-related dysfunction, with Treg cells from aged mice demonstrating both loss of reparative programs and gain of maladaptive programs. Strategies to restore youthful Treg cell functional programs could be leveraged as therapies to improve outcomes among older individuals with severe viral pneumonia.


Assuntos
Envelhecimento/fisiologia , Vírus da Influenza A , Influenza Humana/patologia , Pulmão/patologia , Pneumonia Viral/patologia , SARS-CoV-2 , Linfócitos T Reguladores/patologia , Fatores Etários , Envelhecimento/metabolismo , Animais , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Influenza Humana/complicações , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Linfócitos T Reguladores/metabolismo
18.
Commun Biol ; 4(1): 172, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558616

RESUMO

IL-36, which belongs to the IL-1 superfamily, is increasingly linked to neutrophilic inflammation. Here, we combined in vivo and in vitro approaches using primary mouse and human cells, as well as, acute and chronic mouse models of lung inflammation to provide mechanistic insight into the intercellular signaling pathways and mechanisms through which IL-36 promotes lung inflammation. IL-36 receptor deficient mice exposed to cigarette smoke or cigarette smoke and H1N1 influenza virus had attenuated lung inflammation compared with wild-type controls. We identified neutrophils as a source of IL-36 and show that IL-36 is a key upstream amplifier of lung inflammation by promoting activation of neutrophils, macrophages and fibroblasts through cooperation with GM-CSF and the viral mimic poly(I:C). Our data implicate IL-36, independent of other IL-1 family members, as a key upstream amplifier of neutrophilic lung inflammation, providing a rationale for targeting IL-36 to improve treatment of a variety of neutrophilic lung diseases.


Assuntos
Interleucina-1/metabolismo , Pulmão/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Pneumonia Viral/metabolismo , Receptores de Interleucina-1/metabolismo , Animais , Células Cultivadas , Fumar Cigarros , Modelos Animais de Doenças , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Interleucina-1/genética , Pulmão/imunologia , Pulmão/virologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/virologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Receptores de Interleucina-1/genética , Transdução de Sinais
19.
Genomics ; 113(1 Pt 2): 716-727, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049361

RESUMO

Influenza A virus is a single-stranded RNA virus that can cause great mortality and economic loss worldwide. Circular RNAs (circRNAs) are non-coding RNAs that have been shown to have important functions in the regulation of biological processes. However, their functions during the influenza A virus infection process remain unclear. Herein, RNA sequencing technology was used to identify circRNAs expressed in mouse lungs during infection with H7N9/PB2-627 K/701D (H7N9/Wild-type) virus and PB2 mutant viruses (H7N9/PB2-627E/701D and H7N9/PB2-627E/701 N). We identified 7126 circRNAs at different genomic locations during H7N9 influenza virus and its mutant virus infections, of which 186 were differentially expressed. Enrichment analysis revealed that the differentially expressed circRNAs were associated with the viral infection process. Our study shows that circRNA expression profiles were altered following H7N9 influenza A virus infection and the differentially expressed circRNAs may have an important immune-regulating function during viral infection.


Assuntos
Pulmão/metabolismo , Pneumonia Viral/metabolismo , RNA Circular/genética , Animais , Feminino , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Viral/genética , Pneumonia Viral/virologia , RNA Circular/metabolismo
20.
Comput Biol Med ; 126: 104051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33131530

RESUMO

SARS-CoV-2 has ushered a global pandemic with no effective drug being available at present. Although several FDA-approved drugs are currently under clinical trials for drug repositioning, there is an on-going global effort for new drug identification. In this paper, using multi-omics (interactome, proteome, transcriptome, and bibliome) data and subsequent integrated analysis, we present the biological events associated with SARS-CoV-2 infection and identify several candidate drugs against this viral disease. We found that: (i) Interactome-based infection pathways differ from the other three omics-based profiles. (ii) Viral process, mRNA splicing, cytokine and interferon signaling, and ubiquitin mediated proteolysis are important pathways in SARS-CoV-2 infection. (iii) SARS-CoV-2 infection also shares pathways with Influenza A, Epstein-Barr virus, HTLV-I, Measles, and Hepatitis virus. (iv) Further, bacterial, parasitic, and protozoan infection pathways such as Tuberculosis, Malaria, and Leishmaniasis are also shared by this virus. (v) A total of 50 candidate drugs, including the prophylaxis agents and pathway specific inhibitors are identified against COVID-19. (vi) Betamethasone, Estrogen, Simvastatin, Hydrocortisone, Tositumomab, Cyclosporin A etc. are among the important drugs. (vii) Ozone, Nitric oxide, plasma components, and photosensitizer drugs are also identified as possible therapeutic candidates. (viii) Curcumin, Retinoic acids, Vitamin D, Arsenic, Copper, and Zinc may be the candidate prophylaxis agents. Nearly 70% of our identified agents are previously suggested to have anti-COVID-19 effects or under clinical trials. Among our identified drugs, the ones that are not yet tested, need validation with caution while an appropriate drug combination from these candidate drugs along with a SARS-CoV-2 specific antiviral agent is needed for effective COVID-19 management.


Assuntos
Antivirais , Betacoronavirus , Infecções por Coronavirus , Bases de Dados Genéticas , Descoberta de Drogas , Modelos Biológicos , Pandemias , Pneumonia Viral , Antivirais/química , Antivirais/farmacocinética , Antivirais/uso terapêutico , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/genética , Pneumonia Viral/metabolismo , Proteômica , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...